Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 22, 2026
- 
            Free, publicly-accessible full text available June 6, 2026
- 
            Artificial Intelligence (AI) technologies have become increasingly pervasive in our daily lives. Recent breakthroughs such as large language models (LLMs) are being increasingly used globally to enhance their work methods and boost productivity. However, the advent of these technologies has also brought forth new challenges in the critical area of social cybersecurity. While AI has broadened new frontiers in addressing social issues, such as cyberharassment and cyberbullying, it has also worsened existing social issues such as the generation of hateful content, bias, and demographic prejudices. Although the interplay between AI and social cybersecurity has gained much attention from the research community, very few educational materials have been designed to engage students by integrating AI and socially relevant cybersecurity through an interdisciplinary approach. In this paper, we present our newly designed open-learning platform, which can be used to meet the ever-increasing demand for advanced training in the intersection of AI and social cybersecurity. The designed platform, which consists of hands-on labs and education materials, incorporates the latest research results in AI-based social cybersecurity, such as cyberharassment detection, AI bias and prejudice, and adversarial attacks on AI-powered systems, are implemented using Jupyter Notebook, an open-source interactive computing platform for effective hands-on learning. Through a user study of 201 students from two universities, we demonstrate that students have a better understanding of AI-based social cybersecurity issues and mitigation after doing the labs, and they are enthusiastic about learning to use AI algorithms in addressing social cybersecurity challenges for social good.more » « lessFree, publicly-accessible full text available April 20, 2026
- 
            Free, publicly-accessible full text available January 17, 2026
- 
            Free, publicly-accessible full text available December 16, 2025
- 
            Cyberbullying is a well-known social issue, and it is escalating day by day. Due to the vigorous development of the internet, social media provide many different ways for the user to express their opinions and exchange information. Cyberbullying occurs on social media using text messages, comments, sharing images and GIFs or stickers, and audio and video. Much research has been done to detect cyberbullying on textual data; some are available for images. Very few studies are available to detect cyberbullying on GIFs/stickers. We collect a GIF dataset from Twitter and Applied a deep learning model to detect cyberbullying from the dataset. Firstly, we extracted hashtags related to cyberbullying using Twitter. We used these hashtags to download GIF file using publicly available API GIPHY. We collected over 4100 GIFs including cyberbullying and non-cyberbullying. we applied deep learning pre-trained model VGG16 for the detection of the cyberbullying. The deep learning model achieved the accuracy of 97%. Our work provides the GIF dataset for researchers working in this area.more » « less
- 
            null (Ed.)In biometric systems, the process of identifying or verifying people using facial data must be highly accurate to ensure a high level of security and credibility. Many researchers investigated the fairness of face recognition systems and reported demographic bias. However, there was not much study on face presentation attack detection technology (PAD) in terms of bias. This research sheds light on bias in face spoofing detection by implementing two phases. First, two CNN (convolutional neural network)-based presentation attack detection models, ResNet50 and VGG16 were used to evaluate the fairness of detecting imposer attacks on the basis of gender. In addition, different sizes of Spoof in the Wild (SiW) testing and training data were used in the first phase to study the effect of gender distribution on the models’ performance. Second, the debiasing variational autoencoder (DB-VAE) (Amini, A., et al., Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure) was applied in combination with VGG16 to assess its ability to mitigate bias in presentation attack detection. Our experiments exposed minor gender bias in CNN-based presentation attack detection methods. In addition, it was proven that imbalance in training and testing data does not necessarily lead to gender bias in the model’s performance. Results proved that the DB-VAE approach (Amini, A., et al., Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure) succeeded in mitigating bias in detecting spoof faces.more » « less
- 
            Skeleton-Based Activity recognition is an active research topic in Computer Vision. In recent years, deep learning methods have been used in this area, including Recurrent Neural Network (RNN)-based, Convolutional Neural Network (CNN)-based and Graph Convolutional Network (GCN)-based approaches. This paper provides a survey of recent work on various Graph Convolutional Network (GCN)-based approaches being applied to Skeleton-Based Activity Recognition. We first introduce the conventional implementation of a GCN. Then methods that address the limitations of conventional GCN's are presented.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available